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AMract-Spectral domain asymptotic are used to develop a

hybrid (ray)-(Floquet mode) parametrization that models time-
harmonic plane-wave interaction with a truncated grating of

period&dly spaced, coplanar, infinitesimally thin, perfectly con-

ducting strips in free space. By distinctly displaying the edge
effects as well as the truncated Floquent mode contributions from
the body of the grating, the model—which is vaKd in the near and

far zones-contains the necessary ingredients for finite-grating

design; the truncated Floquent modes are based on those for the
finite grating. Plane-wave diffraction results computed from the

model are shown to agree very well with numerical reference

data generated by a (spectral domain)-(method of momenta)

algorithm.

R ECENTLY, we have developed a hybrid (ray) -(Eloquent

mode)-(MOM) algorithm for numerical as well as ana-

lytic-asymptotic modeling of two-dimensional time-harmonic

and transient plane-wave scattering from finite gratings com-

posed of coplanar, infinitesimally thin, perfectly conducting

strips in free space [1]; the method of moments (MOM) is

used to determine the currents induced on the strips. The

resu king explicit asymptotic fields have been found to agree

remarkably well with direct numerical reference data. They

parametrize the data in terms of dominant physical scattering

mechanisms, which are uniformly valid for observations in the

near, intermediate, or far zone of the grating. Involving edge

diffractions from the ends of the grating, truncated Floquet

modes from the bulk, and transition functions across the

Floquet-mode shadow boundaries, these constituents furnish

the wave-optical tools for finite-grating design. In this com-

munication we demonstrate the method for time-harmonic

scattering.

Consider the finite-periodic AI-strip grating shown in Fig.

1, with strip width w, strip spacing s, and period d = w + s.

We analyze time-hatmonic plane-wave scattering from such a

structure by first performing a MOM analysis for the induced

currents [2]. After determining the currents, we evaluate the

scattered fields by using the spectral domain versions of the

Green’s function and surface currents (Fourier transform with

respect to the spatial’ variable z):
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where kz is the spatial spectral variable, ‘iiG represents the

spectral domain Green’s function for scattered field component

u,, ~ represents the surface currents in the spectral domain,

and the implied e–iwt time dependence is suppressed. The

free-space spectral Green’s function contains no poles in the

complex k.-plane.

The surface currents on all strips are found rigorously by

the MOM, but are approximated as

~~[x’ – (n – l)d] ~ JnO[x’ – (n – l)d]eikod(n–no)sino~, (2)

where Jn [z’ – (n – 1)d] is the current on the nth strip cen-
tered at Zn = (n – l)d and extending over lx’ – ~~ I < ~, 6,

is the plane-wave incidence angle, ko = 27r/& is the free-

space wavenumber, and Jno is the MOM-computed current

on the reference strip no that will be chosen to lie in the

center of the grating. This approximation neglects end effects

associated with the outer strips of the grating, but such effects

have been found to be negligible in cases investigated so far.

By expressing the currents as in (2), it. can easily be

shown that ~ has an infinite number of poles at kz~ =

k. [~ – sin 6,], for all integers m. These poles correspond

exactly to the discrete Floquet mode spectra of a corresponding

infinitely wide grating. Using (2) in (1), we therefore introduce

Floquet-mode poles into the inverse spectral integral. The

scattered field can be expressed as

us = UI – UTexp [–ikoiVdsin 0,] (3)

with Uz,r evaluated by uniform asymptotic [3] to yield an

expression of the form

“r ‘-eik”L’’”e-i”’4g(””)

- ~sgn(dl,r - ~m]iname’’o~,rl+~-’lz,~,~
m

erfc[me-z’l~~-~l]

+ ‘2m~~ ~me~~o~l>r Cos [4m-@l,rl

U[~Z,T\ – l#ml]UIOl,r#m]sgn(Ot,r). (4)

Here, erfc(.) denotes the error function complement, U(.)

the Heaviside function, am the residue at the pole kcw. and
~m = sin-l [* – sin 0,] the angle of propagation of the

mth Floquet mode. Furthermore, Li,. and Oz,. locate the

observation point with respect to the outer edges of the left and

right most unit cells of the truncated grating (see Fig. 1). In (4),
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Fig. 1. Truncated periodic grating of N coplanar infinitesimally thin, per-
fectly conducting strips of width w and spacing s in free space. Coordinates
and observation regions pertain to the GTD interpretation of plane-wave
scattering from the grating. The angles Ol?, and dktauces Ll,, locate the
left-most and right-most unit cells, respectwely, as seen by the observer at
(zOb,, yob, ). The angle q$m(w) denotes the angle of propagation of the mth
Floquet mode, its domain of existence being limited by the dashed shadow
boundaries.
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Fig. 2. Scattered electric field magnitude from 20 strips of width 1 A. and
spacing Ao /2 due to a TM polarized plane wave incident at 0, = 45°,

observed as a function of angle at dktance 100 AO from the grating center.
Solid curve represents reference results from a direct numerical inversion;

the points represent asymptotic results from (4). Arrows identify the angles

CPO= –45°, @l = –2.31°, 42 = 38.8° corresponding to the 3 Floquet
modes cj~ excited on an infinite grating period (w + s) = 1.5 AO.

we assume observation distances at which evanescent modes

are negligible; this restricts the mode sum to Ikz~ I < kO.

The physical interpretation of (4) has been incorporated into

Fig. 1. The third term in (4) represents Floquet modes which

individually contribute in a semi-infinite spatial domain to the

right of the respective shadow boundaries 191,r= &. In the

total scattered field (3), this implies the absence of the mth

Floquet mode in the domain Oi < @~ and or > @~; in

these regions, the scattering is due to contributions from edge

diffraction and possibly other modes. The first and second

terms in (4) are associated with wave phenomena that are

phase centered at the outermost left-hand (subscript 1) and

right-hand (subscript r-) unit cells. Together, they describe edge

effects and establish a uniform transition across the shadow

boundary of each mode. Although the first expression in (4)
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Fig. 3. As in Fig. 2, but with the fields observed at 106A. from the grating

center. Solid curve represents results from the numerical reference solution;

the points are based on the simplified far-field-pattern function ~(~, 6, ).

has the form of a diffraction term in the geometrical theory

of diffraction (GTD), the incorporation of uniform asymptotic

removes its singularities at the shadow boundaries; therefore, it

does not by itself represent classical GTD edge diffraction [4].

When the grating is allowed to become wider and the fields

are observed not too far from the grating surface, the first two

terms in (4) become negligible, and the fields are expressed

by the remaining Floquet mode expansion characteristic of

infinite gratings.

When the observer moves to the far zone of the grating

where 191z ~, = (?, the individual shadow bouncktry transition

regions overlap, and the expression in (4) changes in such a

manner that the total scattered field in (3) can be characterized

even at 6 = q$~ by a far-field-pattern function \ (0, O;) syn-

thesized entirely by the nonuniform (classical) edge diffraction

from the left and right truncations. Each edge diffraction has

the form of the first term in (4) provided that the partial

edge-diffraction coefficients g(h,,,6,)are replaced by the full

versions h(dt,~, Oi), 191,,+ 0. For TM polarization, one finds
from far-field asymptotic applied to (1) that

~1 (i%osin d~,.) cos 6’~,r

‘(01’-’ 02) = [1 - exp (-2dko(sinf7, + sind~)r))] “ ‘5)

Although each hi,, is singular at 191,.= @n, the singularities

cancel when combined to construct US (see [4] for the classical

case). Analogous comments apply to TE polarization. Since

the diffraction coefficients depend on the spectral amplitudes

~1 (k. sin (31,,) of the strip currents as well as on the dimension

d of the unit cell, they carry the signature of the injinite grating.

To exhibit the accuracy of (4) and of its reduced far-

field version, we consider scattering from a 20-strip grating

withw=~oands= ~ Jo, excited by a TM polarized

plane wave incident at an angle of 45°. The electric field

magnitude observed 100 A. from the center of the grating
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is plotted as a function of angle in Fig. 2. The solid curve

was obtained by numerical integration of (1) with the MOM-

computed currents from all 20 strips, while the dots represent

results computed from (4). In this near zone of the grating,

01 and 0, are distinct, therefore requiring the detailed uniform

asyrnptotics in (4). Fig. 3 contains results for the same problem

when the observation circle is in the far zone observed 106A0

from the center of the grating. Again, the numerical reference

solution shown solid in Fig. 3 was computed from (1) with

the individual currents on all 20 strips. The dots are from

the simplified far-field form that involves ~(d, 0,). Clearly

evident in both figures are peaks near the propagation angles

do = –45°, 41 = –2.31°, and 42 = 38.8°0f the three Floquet
modes that are excited on an infinite grating with the same

skip width and spacing. Clearly evident also is the loss of fine

resolution in scattered field data (Fig. 2) when the observer

mcwes to the far zone (Fig. 3).

‘The results here, which are typical samples from a large

data bank, demonstrate the utility of the hybrid (ray)–(Floquet

mclde)–(MOM) algorithm for calculating and physically inter-

preting the fields scattered from a finite periodic strip grating.

The synthesizing wave objects describe edge diffraction from

the ends of the grating, bulk scattering in terms of finite-

aperture Floquet modes, and transition functions across the

Floquet-mode shadow boundaries. The signature of the peri-

odicity is imprinted throughout and is particularly “clean” in

the far-zone diffraction pattern. Representing generalizations,

for periodic structure scatterers, of their conventional GTD

counterparts for smooth truncated surfaces, and being remark-

ably accurate as demonstrated by comparison with numerical

reference data, the new wave objects should find use in the

analysis and design of finite gratings just as conventional GTD

wave constituents find use in the analysis and control of target

scattering.
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