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Design-Oriented Parametrization of
Truncated Periodic-Strip Gratings
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Abstract—Spectral domain asymptotics are used to develop a
hybrid (ray)-(Floquet mode) parametrization that models time-
harmonic plane-wave interaction with a truncated grating of
periodically spaced, coplanar, infinitesimally thin, perfectly con-
ducting strips in free space. By distinctly displaying the edge
effects as well as the truncated Floquent mode contributions from
the body of the grating, the model—which is valid in the near and
far zomes—contains the necessary ingredients for finite-grating
design; the truncated Floquent modes are based on those for the
finite grating. Plane-wave diffraction results computed from the
model are shown to agree very well with numerical reference
data generated by a (spectral domain)-(method of moments)
algorithm.

ECENTLY, we have developed a hybrid (ray)-(Floquent

mode)-(MOM) algorithm for numerical as well as ana-
lytic-asymptotic modeling of two-dimensional time-harmonic
and transient plane-wave scattering from finite gratings com-
posed of coplanar, infinitesimally thin, perfectly conducting
strips in free space [1]; the method of moments (MOM) is
used to determine the currents induced on the strips. The
resulting explicit asymptotic fields have been found to agree
remarkably well with direct numerical reference data. They
parametrize the data in terms of dominant physical scattering
mechanisms, which are uniformly valid for observations in the
near, intermediate, or far zone of the grating. Involving edge
diffractions from the ends of the grating, truncated Floquet
modes from the bulk, and transition functions across the
Floquet-mode shadow boundaries, these constituents furnish
the wave-optical tools for finite-grating design. In this com-
munication we demonstrate the method for time-harmonic
scattering.

Consider the finite-periodic N-strip grating shown in Fig.
1, with strip width w, strip spacing s, and period d = w + s.
We analyze time-harmonic plane-wave scattering from such a
structure by first performing a MOM analysis for the induced
currents [2]. After determining the currents, we evaluate the
scattered fields by using the spectral domain versions of the
Green’s function and surface currents (Fourier transform with
respect to the spatial\ variable x):

us(:c,z)=% / i (ke 2) F (R ) e dhy, (1)
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where k, is the spatial spectral variable, @ represents the
spectral domain Green’s function for scattered field component
Usg, J represents the surface currents in the spectral domain,
and the implied e~*! time dependence is suppressed. The
free-space spectral Green’s function contains no poles in the
complex k,-plane.
The surface currents on all strips are found rigorously by
the MOM, but are approximated as
Jolz' = (n = 1)d]Z Iy, 2" — (n — 1)d]etFodn—na)sing. (9
where J,[z' — (n — 1)d] is the current on the nth strip cen-
tered at z,, = (n — 1)d and extending over |2’ — z,| < ¥, 0,
is the plane-wave incidence angle, k, = 27 /), is the free-
space wavenumber, and J,, is the MOM-computed current
on the reference strip n, that will be chosen to lie in the
center of the grating. This approximation neglects end effects
associated with the outer strips of the grating, but such effects
have been found to be negligible in cases investigated so far.
By expressing the currents as in (2), it can easily be
shown that J has an infinite number of poles at ki, =
ko [—m—d’\—‘l — sin Hz], for all integers m. These poles correspond
exactly to the discrete Floquet mode spectra of a corresponding
infinitely wide grating. Using (2) in (1), we therefore introduce
Floquet-mode poles into the inverse spectral integral. The
scattered field can be expressed as

Us = U1 — Uy €Xp [—iko Ndsin 6,] 3)

with u;, evaluated by uniform asymptotics [3] to yield an
expression of the form

U p ~1/ 27r/k0Ll,re““°L“e_i"/‘lg(ﬂl,r, 6:)

= 3 50(61r — bm)imaetiobirlén =0 lt/2

m

erfc [, [koLir /27" % |pm — 9,,7“]}

+ 27‘_2 § almeikoL[,r CcOos [¢>m—9m]
m

Ul - l¢m|]U[0l,r¢m]Sgn(91,r)~ )

Here, erfc(-) denotes the error function complement, U(:)
the Heaviside function, a,,, the residue at the pole k... and
¢m = sin~! [ —sing,] the angle of propagation of the
mth Floguet mode. Furthermore, L;, and 6;, locate the
observation point with respect to the outer edges of the left and
right most unit cells of the truncated grating (see Fig. 1). In (4),
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Fig. 1. Truncated periodic grating of NV coplanar infinitesimally thin, per-

fectly conducting strips of width w and spacing s in free space. Coordinates
and observation regions pertain to the GTD interpretation of plane-wave
scattering from the grating. The angles 6; , and distances L; , locate the
left-most and right-most unit cells, respectively, as seen by the observer at
(Zobs- Yobs ). The angle ¢y, (w) denotes the angle of propagation of the mth
Floquet mode, its domain of existence being limited by the dashed shadow
boundaries.
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Fig. 2. Scattered electric field magnitude from 20 strips of width 1 A¢ and
spacing Ao/2 due to a TM polarized plane wave incident at 8, = 45°,
observed as a function of angle at distance 100 Ao from the grating center.
Solid curve represents reference results from a direct numerical inversion;
the points represent asymptotic results from (4). Arrows identify the angles
@ = —45°, ¢1 = —2.31°, ¢ = 38.8° corresponding to the 3 Floquet
modes ¢, excited on an infinite grating period (w + s) =15 A,.

we assume observation distances at which evanescent modes
are negligible; this restricts the mode sum to |kzm| < ko.
The physical interpretation of (4) has been incorporated into
Fig. 1. The third term in (4) represents Floquet modes which
individually contribute in a semi-infinite spatial domain to the
right of the respective shadow boundaties §;, = ¢n,. In the
total scattered field (3), this implies the absence of the mth
Floquet mode in the domain 6, < ¢,, and 8, > ¢p,; in
these regions, the scattering is due to contributions from edge
diffraction and possibly other modes. The first and second
terms in (4) are associated with wave phenomena that are
phase centered at the outermost left-hand (subscript 1) and
right-hand (subscript 7) unit cells. Together, they describe edge
effects and establish a uniform transition across the shadow
boundary of each mode. Although the first expression in (4)
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Fig. 3. As in Fig. 2, but with the fields observed at 10°Xq from the grating

center. Solid curve represents results from the numerical reference solution;
the points are based on the simplified far-field-pattern function f(6.6,).

has the form of a diffraction term in the geometrical theory
of diffraction (GTD), the incorporation of uniform asymptotics
removes its singularities at the shadow boundaries; therefore, it
does not by itself represent classical GTD edge diffraction [4].
When the grating is allowed to become wider and the fields
are observed not too far from the grating surface, the first two
terms in (4) become negligible, and the fields are expressed
by the remaining Floquet mode expansion characteristic of
infinite gratings.

When the observer moves to the far zone of the grating
where 8; =~ 6, = f, the individual shadow boundary transition
regions overlap, and the expression in (4) changes in such a
manner that the fotal scattered field in (3) can be characterized
even at § = ¢,, by a far-field-pattern function f(8,6;) syn-
thesized entirely by the nonuniform (classical) edge diffraction
from the left and right truncations. Each edge diffraction has
the form of the first term in (4) provided that the partial
edge-diffraction coefficients g(6; ., 6,) are replaced by the full
versions h(f;.,0;), 0;,» — 8. For TM polarization, one finds
from far-field asymptotics applied to (1) that

Ji (kosinf ) cos b,

h(6;.,0,) = ] 3 ; .
(6. 6.) [1 — exp (—idko(sin 0, + sin b, .))]

&)

Although each h;, is singular at 6; , = ¢, the singularities
cancel when combined to construct u, (see [4] for the classical
case). Analogous comments apply to TE polarization. Since
the diffraction coefficients depend on the spectral amplitudes
J1 (ko sin 6; ,-) of the strip currents as well as on the dimension
d of the unit cell, they carry the signature of the infinite grating.

To exhibit the accuracy of (4) and of its reduced far-
field version, we consider scattering from a 20-strip grating
with w = Ao and s = 3, excited by a TM polarized
plane wave incident at an angle of 45°. The electric field
magnitude observed 100 )¢ from the center of the grating
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is plotted as a function of angle in Fig. 2. The solid curve
was obtained by numerical integration of (1) with the MOM-
computed currents from all 20 strips, while the dots represent
results computed from (4). In this near zone of the grating,
61 and @, are distinct, therefore requiring the detailed uniform
asymptotics in (4). Fig. 3 contains results for the same problem
when the observation circle is in the far zone observed 108 )
from the center of the grating. Again, the numerical reference
solution shown solid in Fig. 3 was computed from (1) with
the individual currents on all 20 strips. The dots are from
the simplified far-field form that involves f(#,6,). Clearly
evident in both figures are peaks near the propagation angles
Po = —45°, ¢ = —2.31°, and ¢ = 38.8°0f the three Flogquet
modes that are excited on an infinite grating with the same
strip width and spacing. Clearly evident also is the loss of fine
resolution in scattered field data (Fig. 2) when the observer
moves to the far zone (Fig. 3).

The results here, which are typical samples from a large
data bank, demonstrate the utility of the hybrid (ray)-(Floquet
mode)-(MOM) algorithm for calculating and physically inter-
preting the fields scattered from a finite periodic strip grating.
The synthesizing wave objects describe edge diffraction from
the ends of the grating, bulk scattering in terms of finite-

aperture Floquet modes, and transition functions across the
Floquet-mode shadow boundaries. The signature of the peri-
odicity is imprinted throughout and is particularly “clean” in
the far-zone diffraction pattern. Representing generalizations,
for periodic structure scatterers, of their conventional GTD
counterparts for smooth truncated surfaces, and being remark-
ably accurate as demonstrated by comparison with numerical
reference data, the new wave objects should find use in the
analysis and design of finite gratings just as conventional GTD
wave constituents find use in the analysis and control of target
scattering.
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